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In the late 1970s Meyer and Miller (MM) [J. Chem. Phys. 1979, 70, 3214.] presented a classical Hamiltonian
corresponding to a finite set of electronic states of a molecular system (i.e., the various potential energy
surfaces and their couplings), so that classical trajectory simulations could be carried out by treating the
nuclear and electronic degrees of freedom (DOF) in an equivalent dynamical framework (i.e., by classical
mechanics), thereby describing nonadiabatic dynamics in a more unified manner. Much later Stock and Thoss
(ST) [Phys. ReV. Lett. 1997, 78, 578.] showed that the MM model is actually not a “model”, but rather a
“representation” of the nuclear-electronic system; i.e., were the MMST nuclear-electronic Hamiltonian taken
as a Hamiltonian operator and used in the Schrödinger equation, the exact (quantum) nuclear-electronic
dynamics would be obtained. In recent years various initial value representations (IVRs) of semiclassical
(SC) theory have been used with the MMST Hamiltonian to describe electronically nonadiabatic processes.
Of special interest is the fact that, though the classical trajectories generated by the MMST Hamiltonian (and
which are the “input” for an SC-IVR treatment) are “Ehrenfest trajectories”, when they are used within the
SC-IVR framework, the nuclear motion emerges from regions of nonadiabaticity on one potential energy
surface (PES) or another, and not on an average PES as in the traditional Ehrenfest model. Examples are
presented to illustrate and (hopefully) illuminate this behavior.

I. Introduction

It is well appreciated that classical molecular dynamics (MD)
simulations are used nowadays to describe an enormously wide
variety of chemical dynamics phenomena in quite large, complex
molecular systems. In fact, it is about the only generally
available theoretical tool available for carrying out such
calculations. The only shortcoming of the approach is that it is,
well, classical, and thus not capable of describing any quantum
mechanical (QM) aspects of the dynamics that may be impor-
tant; quantum effects in the dynamics of molecular systems are
not always important, but sometimes they are, and unless one’s
description is capable of providing at least an approximate
description of them, ones may not know whether they are
important or not.

There are several ways one can proceed to try to include
quantum effects in classical MD simulations; they are all
approximations, of course, because only the Schrödinger equa-
tion for the complete molecular system is without approximation.
Perhaps the most common class of approaches are referred to
as “mixed quantum-classical” treatments, whereby some (usually

small) number degrees of freedom (DOF) are described quantum
mechanically, i.e., by a wave function of the coordinates of these
DOF that is determined via a time-dependent Schrödinger
equation, and the other (typically large) number of DOF are
described classically, i.e., via coordinates and momenta that
follow a classical-like trajectory. The time-dependent Schröd-
inger equation for the quantum DOF, and classical trajectory
equations for the classical DOF, are then integrated simulta-
neously, the coupling between the quantum and classical DOF
being treated in some approximate fashion. There are a variety
of such mixed quantum-classical approaches, and they have been
usefully applied to a variety of problems. The primary short-
coming of such approaches is that there is no way to couple
the quantum and classical DOF that is completely consistent.

Another strategy that has been pursued recently by several
groups is to use a semiclassical (SC) description for all the DOF,
following approaches1 developed in the early 1970s and applied
then to small molecular systems (e.g., inelastic and reactive
scattering of atom-diatom collisions).2 The advantage of this
SC approach is that it provides a dynamically consistent
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treatment of all DOF and, in fact, includes all quantum effects
at least qualitatively (and usually quite quantitatively). The
disadvantage of a SC treatment is that it is in general more
difficult to implement than mixed quantum-classical approxima-
tions, though the resurrection3 in recent years of various initial
Value representations1a (IVRs) of SC has contributed signifi-
cantly toward making SC calculations practical for large
molecular systems. There have been several reviews4 of SC-
IVR methodology and its applications in recent years, and I
refer the reader to these for a general description of the approach
and the various methods used to implement it.

Most applications of SC-IVR approaches have been to
molecular dynamics on one Born-Oppenheimer potential
energy surface (PES), and the question invariably arises as to
whether or not one can use such methods to treat electronically
nonadiabatic processes, i.e., those involving transitions between
different PES’s. The answer is “yes”, and such is the subject of
this paper. Section II first reviews some relevant history and
motivations of how these approaches to electronically nona-
diabatic dynamics came about, and then Section III describes
how modern SC-IVR implements them. Section IV discusses
some of the implications.

Perhaps the most interesting aspect of the formulation
described below is its relation to the classic Ehrenfest model5

for electronically nonadiabatic dynamics. It is thus useful to
conclude this Introduction with a brief review and discussion
of this model. It is a typical mixed quantum-classical approach,
where here the electronic DOF are described QM’ly and the
nuclear DOF treated classically. Thus if {Hk,k′(R)}, k, k′, ) 1, ...,
N is the diabatic6 electronic matrix (as a function of the nuclear
coordinates R) characterizing a set of N electronic states and
their couplings, the amplitudes {ck(t)}for being in the different
electronic states at time t are determined by the standard time-
dependent Schrödinger equation,

ipċk(t)) ∑
k′)1

N

Hk,k′(R(t)) ck′(t) (1.1)

and the nuclear trajectory R(t) by the classical-like equations
of motion,

Ṙ(t))P(t)/µ (1.2a)

Ṗ(t)) - ∂

∂R
Veff(R,t) (1.2b)

where Veff(R,t) is the Ehrenfest average of the diabatic electronic
matrix,

Veff(R,t)) ∑
k,k′)1

N

ck(t) * · Hk,k′(R) ck′(t) (1.2c)

which gives the model its name. This is also often referred to
as a “mean field” model because the effective potential is the
instantaneous average over all electronic states. The initial
conditions (at t ) 0, for example) for these equations of motion
are

ck(0)) δk,i (1.3a)

where i is the initial electronic state, and

R(0))R0 P(0))P0 (1.3b)

where the initial conditions (R0, P0) for the nuclear DOF are
sampled from whatever distribution is appropriate for them.

Perhaps the most serious shortcoming of this traditional
Ehrenfest model shows up in regions where the electronic
coupling vanishes, e.g., in the asymptotic region after a collision;
the effective potential which determines the nuclear motion is
then

Veff(R,t))∑
k)1

N

Hk,k(R) Pk(t) (1.4)

where Pk(t) ) |ck(t)|2 is the probability of being in electronic
state k, which is time-independent when there is no coupling.
In other words, the nuclei end up moving on an aVerage
potential energy surface, rather than (correctly) on one potential
or another depending on the electronic state of the system (i.e.,
the electronic and nuclear DOF are not properly correlated),
and this can be grossly unphysical if the potentials for different
electronic states are very different. One of the major ac-
complishments of the “surface hopping” models introduced by
Tully and Preston7 was to correct this unphysical feature of the
Ehrenfest model.

What is remarkable, though, is that when these “Ehrenfest
trajectories”, i.e., those determined by eqs 1.1 and 1.2a, are used
within SC theory, they actually emerge (correctly) on one
potential surface or the other, without any “hops” between
surfaces or any other ad hoc additions to the theory.8 Showing
how this comes about, and demonstrating it in a simple well-
defined example, is the main purpose of this paper.

II. Some History

a. Resonance Energy Transfer; Need for a Dynamically
Consistent Model. The F + H2 f HF + H reaction was one
of the most thoroughly studied chemical reactions in the 1970s,
and one question regarding it was the extent to which F*, the
2P1/2 excited spin-orbit state of F, is reactive. The adiabatic
PES that correlates to F* is nonreactive, so reaction of F* with
H2 requires that there be a nonadiabatic transition to the lower
(reactive) PES. Earliest considerations suggested9 that there
should be little reaction of F*, because the two PES’s do not
experience any obvious “avoided crossing”, but later quantum
scattering calculations by Lester and Rebentrost10 showed a
strong electronic-to-rotational resonance energy transfer cross
section due to the near match of the 404 cm-1 excitation energy
in F* and the j ) 0f 2 rotational excitation energy of H2 (∼360
cm-1). The physical picture is thus that the electronic transition
to the lower, reactive PES takes place with H2 being rotationally
excited, and then the reaction occurs,

F*+H2(j)0)f F+H2(j)2)fHF+H

The near resonance of the electronic-rotational energy transfer
thus enhances the nonadiabatic transition and leads to significant
reaction of F*. There is a similar near electronic-to-vibrational
resonance energy transfer in Br* + H2(V)0)f Br + H2 (V)1);
i.e., when Br* is quenched in collision with H2, essentially all
the product H2 emerges in the V ) 1 excited state,11,12 because
the spin-orbit splitting in Br (3500 cm-1) is not so far from
the vibrational quantum of H2 (∼4000 cm-1).

However, the simplest type of surface-hopping model7 (a kind
of mixed-quantum classical approximation) does not describe
this kind of resonance enhancement. This is easiest to illustrate13

with regard to the Br* + H2 example. If r and R denote the H2

vibrational and the H2-Br translational coordinates, respectively
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(and ignoring any other coordinates in this pedagogical discus-
sion), let r(t) and R(t) be their values along a classical trajectory,
moving on BO PES W1(r,R), for example. Within the
Landau-Zener-Stuckelberg approximation14 for electronically
nonadiabatic transitions, one monitors the electronic energy
difference to PES W2, e.g., as a function of time along the
nuclear trajectory

∆W(t))W2(r(t),R(t))-W1(r(t),R(t)) (2.1)

and times at which ∆W(t) experiences a local minimum signify
“avoided crossings” of PES’s W1 and W2, and a time at which
a transition between them can occur; if tn is such a time, the
transition probability at this time is given approximately by15

Pn = exp [- 4
3

∆Wn√2∆Wn/∆Ẅn/p] (2.2)

There are in fact many such local minima in ∆W(t) because
∆W depends on the vibrational coordinate r (when the collision
partners are close to one another), and r(t) is an oscillatory
function of time,

r(t) ∼ cos(ωt) (2.3)

where ω is the H2 vibrational frequency. Figure 1 shows a sketch
of ∆W(t) for two situations, indicating the various times where
local minima (avoided crossings) occur. A purely classical
treatment would give the net transition probability as the sum
of making the transition at the various times tn (ignoring, for
this discussion, recrossings from PES W2 back to W1)

P2,1
CL )∑

n

Pn (2.4)

A SC treatment,15 à la Stuckelberg, however, would first
construct the net amplitude (S-matrix element) for making the
transition, with the transition probability being its square
modulus

S2,1 =∑
n

Pn
1⁄2e-i∆Wntn⁄p (2.5a)

P2,1 ) |S2,1|
2 (2.5b)

where the phase associated with each avoided crossing has been
approximated as the electronic energy gap times the time of
the transition. Noting that the times tn are spaced approximately
by the period of the H2 vibration, i.e.,

tn = constant+ n(2π/ω) (2.6)

so that

S2,1 =∑
n

Pn
1⁄2 exp(-2πin∆Wn/pω) (2.7)

If the collision were slow, so that many avoided crossings
contributed with approximately equal probabilities Pn and energy
gaps ∆Wn (e.g., as depicted in Figure 1a), the sum in eq 2.7
would be strongly peaked when ∆W/pω = an integer [recall
the Fourier sum identity

∑
n)-∞

∞

e2πinz )∑
l

δ(z- l) (2.8)

In more realistic situations there are not an infinite number of
avoided crossing encounters (e.g., as sketched in Figure 1b),
and the probability factors are not all the same, so the idealized
delta function peak is broadened but still has the same qualitative
effect of enhancing the transition probability near resonance
(when the electronic energy gap matches the vibrational
quantum). Viewed semiclassically, therefore, the enhancement
of the electronic-vibrational energy transfer due to resonance
energy transfer is an interference effect;13 neglecting the
interference (or coherence) between the various “hops”, eq 2.4,
misses it.

One may ask why is this the case? Why is it necessary to go
to a semiclassical description to obtain the correct resonance
effect, when we know full well that resonance energy transfer
is a perfectly classical phenomenon (recall the demonstrations
in elementary physics class of two coupled pendulums, when
their frequencies are similar)? It is because of the above mixed
quantum-classical description of the system: electronic DOF are
treated QM’ly, as discrete quantum states, whereas the vibration
(and translation) DOF was treated classically, as a coordinate
following a trajectory, and the inconsistency inherent in describ-
ing different DOF differently requires a SC treatment to describe
an effect that would be described correctly classically if all the
DOF were treated dynamically consistently.

b. Classical Model for Electronic Degrees of Freedom.
Considerations such as these led to the conclusion that if one
wished to employ a classical description for the nuclear
DOFsso that classical MD simulation methods could be used
for themsone needed also to have a classical description of
the electronic DOF.16-18 This does not necessarily mean taking
the coordinates and momenta of actual electrons as classical
variablessalthough that is appropriate in some cases, such as
processes involving high Rydberg statessbut rather finding a
dynamical model that characterizes the collective electronic DOF
corresponding to a given finite set of electronic states.

Several heuristic ways were used to construct such classical
models for a given set of electronic PES’s and their couplings;
for the case of two electronic states, all the approaches gave
the same classical model. E.g., one of these16 exploited the fact
that a two-state system is equivalent to a spin 1/2 system, and
then the spin was treated as a classical angular momentum. The
most general approach, though, was the one of Meyer and
Miller18 (MM), whereby the electronic amplitudes {ck(t)} in eq
1.1 were written in terms a pair of action-angle variables {nk(t),
qk(t)} as follows

ck(t)) √nk(t)e
-iqk(t) (2.9)

The expectation value of the electronic Hamiltonian was then
thought of a classical (time-dependent) Hamiltonian of these
action-angle variables,

Figure 1. Sketch of the adiabatic potential difference ∆W(t) along a
classical trajectory, with local minima that correspond to “avoided
crossings”. See the discussion in section IIa following eq 2.1. (a) is
characteristic of a very slow collision, with many vibrational periods
that lead to many local minima, spaced by the vibrational period; (b)
is characteristic of a higher energy collision with fewer vibrational
periods during the interaction time, and thus fewer local minima.
(Reprinted with permission from ref 13. Copyright 1978. American
Institute of Physics.)
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Hel(n,q;t) ≡ ∑
k,k′)1

N

ck(t) * · Hk,k′(R(t)) ck′(t)

)∑
k)1

N

nkHk,k(R(t))+

2 ∑
k<k′)1

N

√nknk′ cos(qk - qk′)Hk,k′(R(t)) (2.10)

where it has been assumed that Hk,k′ is a real symmetric matrix.
It is not hard to show that Hamilton’s equations for these (real
valued) action-angle variables

q̇(t))
∂Hel(n,q;t)

∂n

ṅ(t)) -
∂Hel(n,q;t)

∂q
(2.11)

are identical to the time-dependent Schrödinger equation, eq
1.1, for the (complex valued) amplitudes. (Though we were not
aware of it at the time, this classical analog for an N-state
quantum systemsi.e., eqs 2.9-2.11shad been used much
earlier by Dirac19 for different purposes, namely to derive the
Golden Rule of time-dependent perturbation theory for treating
absorption and emission of radiation.) Several ad hoc modifica-
tions were then added to eq 2.10: on the basis of SC notions
(i.e., the “Langer correction”) the action variables nk were
modified as

nkf nk +
1
2

(2.12)

and then the term 1/2∑kHk,k was subtracted from the Hamiltonian
so that integer values of the actions would yield one specific
PES when the coupling vanished; the resulting “classical
electronic Hamiltonian” thus becomes

Hel(n,q;t))∑
k

nkHk,k(R(t))+

2∑
k<k′

�(nk +
1
2)(nk′ +

1
2) cos(qk - qk′)Hk,k′(R(t)) (2.13a)

and adding to this the nuclear kinetic energy P2/2µ (assuming
for simplicity here that all nuclear coordinates have the same
mass m) yields the full classical nuclear (translation, rotation,
vibration)-electronic Hamiltonian for the nuclear and electronic
DOF,

H(P,R,n,q))P2/2µ+Hel(n,q;R) (2.13b)

The electronic action variables {nk} play the same role, and
have the same classical/semiclassical interpretation, as those for
vibrational and rotational DOF. For example, electronic state
k, corresponds to nk ) 1, with the actions (SC “quantum
numbers”) for all other electronic “modes” being 0. It is easy
to show (by using Hamilton’s equations) that the sum of all the
electronic actions is a constant of the motion for the Hamiltonian
of eq 2.13b,

d
dt∑k)1

N

nk(t)) 0 (2.14)

In other words, the relevant dynamics takes place in the “polyad”
of 1 quantum of excitation in the N electronic DOF.

The first applications of this model Hamiltonian (eq 2.13b)
took place at the “quasi-classical” (QC) level,20 whereby one

computes classical trajectoriesshere for the electronic and
nuclear DOF, via Hamilton’s equationsswith quantized initial
conditions for the bounded DOF, i.e., the rotational, vibrational,
and now also electronic DOF. This prescription chooses the
initial action variables of the bounded DOF as integers,
corresponding to the chosen initial state, and the conjugate angle
variables as random [in the interval (0, 2π)], and the final values
of the action variables are “binned” (or histogrammed) into
quantum number bins to determine the distribution of final
quantum states. As with rotation and vibration, where the initial
conditions are specified in action-angle variables but trans-
formed21 into Cartesian coordinates and momenta for the actual
numerical trajectory calculation, this was also done for the
electronic DOF. The Cartesian electronic-oscillator variables
are defined in the usual way in terms of their action-angle
variables,

xk ) √2nk + 1 cos qk

pk )-√2nk + 1 sin qk (2.15)

and in terms of them the nuclear-electronic Hamiltonian of eq
2.13b becomes

H(P,R,p,x))P2/2µ+∑
k)1

N
1
2

(pk
2 + xk

2 - 1)Hk,k(R)+

∑
k<k′)1

N

(pkpk′ + xkxk′)Hk,k′(R) (2.16)

It is of course quite a “stretch” for the quasi-classical model
to treat the electronic DOF this way, for the electronic “quantum
numbers” nk can never be anything other than 0 or 1 (because
their sum ) 1), and it is well-known that the QC treatment for
vibration and rotation, e.g., works best when many quantum
states are populated by the dynamics and their quantum numbers
are .0. Nevertheless, a variety of applications were carried out
this way in the late 1970s and gave quite reasonable results.
For example, Figure 2 shows a comparison22 of the 3d
nonreactive quenching of F* by collision with H2(j)0),
demonstrating the resonance effect discussed above; i.e., most
of the product has H2 excited to the j ) 2 state. And the results
are in reasonable agreement with Lester and Rebentrost’s10

coupled-channel quantum scattering calculations. Figure 3 shows
a similar comparison23 for Br* + H2 (V ) 0), where the cross
section for forming H2 in the V ) 1 state is much larger than
that for V ) 0. Figure 4 shows the cross section for charge
transfer, Na + I f Na+ + I-, a classic ionic-covalent curve-
crossing problem,24 again with quite reasonable agreement with
exact QM calculations.25 Probably one feature that makes the
QC version of this nuclear-electronic model work as well as
it does, is that the electronic DOF are essentially harmonic
oscillators, as is clear from the form of the Hamiltonian eq 2.16,
and it is well-known that classical and semiclassical descriptions
often work fortuitously well for harmonic systems even when
the quantum numbers (actions variables) are small. Still, one
cannot always expect this QC version of the model to work as
well as the examples noted here.

One possible way to improve matters is to implement the
model semiclassically, i.e., within the framework of “classical
S-matrix” theory.1a Here one finds specific classical trajectories
(of the full nuclear-electronic system as above) that begin and
end with integer values of the action variables of all bounded
DOF, e.g., vibrational, rotational, and electronic, of the
nuclear-electronic Hamiltonian, and can express the S-matrix
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(the matrix of transition amplitudes) in terms of them. This was
done for a model problem in the original MM18 paper and was
indeed seen to be much more accurate than the QC implementa-
tion. The difficulties of applying the classical S-matrix approach
to systems with many DOF, however, prevented further ap-
plications with it. The next section, however, discusses more
recent advances using IVR methods to implement the SC
approximation.

There are two final points worth pointing out before conclud-
ing this lengthy historical review. First, it is possible to use an
adiabatic representation rather than a diabatic representation as
has been done so far. This is a straightforward classical canonical
transformation and was carried out in the Appendix of the MM
paper. Using Cartesian electronic variables, as in eq 2.16 (though

here they are “new” electronic variables, for which a different
notation is not used because it is unnecessary for present
purposes), the adiabatic nuclear-electronic Hamiltonian is

H(P,R,p,x)) 1
2

|P +∆P|2 +∑
k)1

N
1
2

(pk
2 + xk

2 - 1)Ek(R)

(2.17a)

where {Ek(R)} are the Born-Oppenheimer PES’s (i.e., the
eigenvalues of the diabatic electronic matrix {Hk,k′(R)}), |ψk〉
denote the BO electronic wave functions (the eigenVectors of
the diabatic electronic matrix), and ∆P is given by

∆P ) ∑
k<k′)1

N

p(pk′xk - pkxk′)〈ψk|
∂ψk′

∂R 〉 (2.17b)

One notes that this classical nuclear-electronic Hamiltonian
has the same form as the QM version, involving the same
nonadiabatic coupling elements which characterize the quantum
nonadiabatic dynamics.

Finally, it is important to emphasize that the classical
trajectories that result from this classical nuclear-electronic
Hamiltonian (eq 2.16) are essentially identical to the Ehrenfest
equations, eqs 1.1 and 1.2a above. (This is easy to verify by
writing out Hamilton’s equations from eq 2.16, and noting the
expression for the electronic amplitudes in terms of the Cartesian
electronic variables, ck ) (xk + ipk)/�2). I say “essentially”
equivalent because there is a slight difference due to the
modification made in eq 2.12, which introduces a zero point
energy (ZPE) into the electronic DOF; without this ZPE, the
trajectories would not depend on the initial values of the
electronic angle variables, so for a given electronic state (and
given initial conditions of the nuclear DOF) there would be only
one trajectory. With this modification, there is an ensemble of
trajectories for a given electronic state, so that even at the
primitive quasi-classical level of binning the final electronic
actions, one has different nuclear trajectories for different final
electronic states (unlike the traditional Ehrenfest model which
has the same nuclear trajectory for all final electronic states).

III. Implementation via the Initial Value Representation
of SC Theory

a. Stock and Thoss. The most important next step in this
story is the paper of Stock and Thoss26 (ST), whose goal was

Figure 2. Cross section for quenching of F*(2P1/2) by collision with
H2(j)0), as a function of initial translational energy E. The solid
curves are the quantum mechanical results of ref 22, and the points,
the results of the “quasi-classical” trajectory calculations described
in section IIb. Note the break in the scale; i.e., the cross section for
rotationally excited H2(j)2) is more than an order of magnitude
larger. (Reprinted with permission from ref 22. Copyright 1979.
American Institute of Physics.)

Figure 3. Cross section for quenching of Br*(2P1/2) by collision with
H2(V)0), as a function of initial translational energy, given by quasi-
classical trajectory calculations as discussed in section IIb. The crosses
and solid circles are for final H2 vibrational state V ) 1 and 0,
respectively; i.e., the cross section for vibrationally excited H2 is much
larger. (The error bars denote the usual Monte Carlo error estimate.)
(Reprinted with permission from ref 23. Copyright 1984. American
Institute of Physics.)

Figure 4. Cross section for the charge transfer process Na + I f
Na+ + I-, as a function of initial translational energy. The solid curve
is the quantum coupled channel calculation from ref 24 and the open
circles those of the quasi-classical trajectory calculations discussed in
section IIb. (The dashed curve shows the results of a perturbative
approximation not related to the present discussion.) (Reprinted with
permission from ref 24. Copyright 1982. American Institute of Physics.)
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to develop a continuous representation of the electronic DOF
to be able to apply an initial value representation (IVR) of
semiclassical theory (specifically the Herman-Kluk, coherent
state IVR;3a,b see below). The approach they used was a
procedure due to Schwinger for mapping a finite set of quantum
states onto a set of bosons (i.e., harmonic oscillators), and the
nuclear-electronic Hamiltonian they obtained was identical to
the MM result in eq 2.16. What is important about the ST result
is that it shows this Hamiltonian not to be a model, i.e.,
approximation, but rather an exact representation of the
nuclear-electronic system. In other words, were one to take
this as the Hamiltonian operator in a Schrödinger equation, the
exact quantum dynamics would result.

Perhaps the easiest way to demonstrate this is simply to
compute the electronic matrix of the Hamiltonian operator
corresponding to the classical Hamiltonian of eq 2.16, using
the N electronic oscillator basis functions {Φk(x)}; these are a
product of N harmonic oscillator eigenfunctions that have one
quantum of excitation in mode k and none in all the others,

Φk(x)) φ1(xk) ∏
k′*1k′*k

N

φ0(xk′)

)√2π-N/4xke
-1/2x ·x (3.1)

It is a simple matter to compute the matrix elements 〈Φk|Ĥ|Φk′〉
(because they are elementary harmonic oscillator matrix ele-
ments); the nuclear kinetic energy term in the Hamiltonian is
diagonal, proportional to the unit matrix δk,k′, and the result for
the remainder is Hk,k′(R), the original diabatic electronic matrix.
Because the matrix of the electronic-nuclear Hamiltonian is
the same as that with the original diabatic electronic basis, the
resulting quantum mechanics must therefore be the same.

The only approximation involved in using what I will now
call the MMST Hamiltonian, eq 2.16, is therefore the dynamical
method used to implement itse.g., the quasi-classical model
discussed above or the SC-IVR methodology discussed
belowsand not the fundamental Hamiltonian itself. This
Hamiltonianswithin the (conserved) polyad of one quantum
of excitation in the “electronic oscillators”sis completely
equivalent to the original quantum mechanical nuclear-electronic
system.

b. Initial Value Representation. Initial value representations
(IVRs) were introduced1a very early in semiclassical theory (as
a way to deal with “classically forbidden” processes), and they
have re-emerged3,4 in recent years as a practical way for dealing
with molecular systems with many degrees of freedom. They
replace the nonlinear boundary value problem of “pure”
semiclassical approaches, such as “classical S-matrix” theory,
by a Monte Carlo average over the initial values of classical
trajectories, and this is more amenable for systems with many
degrees of freedom, for it allows one to utilize much of the
Monte Carlo methodology that has been developed for classical
MD simulations. SC-IVR methods and their applications have
been reviewed several times in recent years, so here I will only
summarize the basic ideas that are necessary for present
applications.

One can state the SC-IVR succinctly as an expression for
the propagator (time evolution operator), exp(-iĤt/p). The
Herman-Kluk,3a,b or coherent state version is

e-iĤt⁄p) (2πp)-F∫ dp0∫ dq0 Ct(p0,q0)e
iSt(p0,q0)⁄p|pt,qt〉〈 p0,q0|

(3.2)

where (q0, p0) are the initial conditions of the coordinates and

momenta for classical trajectories, and (qt, pt) are their values
at time t later; St is the classical action integral (the time integral
of the Lagrangian) along this trajectory, and the pre-exponential
factor Ct involves the monodromy matrix (the matrix of
derivatives of qt and pt with respect to q0 and p0). The coherent
states |p, q〉 in eq 3.2 are standard Cartesian minimum
uncertainty wavepackets,

〈q′|p,q〉 ) (|γ|
π )F⁄4

exp[- 1
2

(q′ - q) · γ · (q′ - q)+

ip · (q′ - q)/p] (3.3)

where F is the number of DOF of the system and the matrix γ
can be any positive matrix chosen for convenience. The simpler
coordinate space IVR has the same form as eq 3.2, with the
coherent states replaced by Dirac position eigenstates,

|p0,q0〉f |q0〉

|pt,qt〉f |qt〉 (3.4)

and with a different pre-exponential factor (but still involving
elements of the monodromy matrix); it can be obtained from
eqs 3.2 and 3.3 by taking the limit γ f ∞.

Because the primary interest in SC-IVR methods is to use
them as a way to add quantum effects to classical MD
simulations of large molecular systems, their formulation has
followed classical MD methodology as closely as possible. Thus
Cartesian coordinates are used essentially exclusively, eschewing
more sophisticated SC methods such as action-angle variables,
Airy function uniformization, etc., that are useful for analytical
analysis and treatments but which do not lend themselves to
generic computational implementation. Exceptions to this “total
Cartesian” approach are that sometimes covalent bond distances
are fixed and only low frequency, large amplitude motions
treated; this is common in classical MD simulations and has
also been used analogously in SC-IVR approaches.27,28

Much of the effort in the SC-IVR arena has been their use to
evaluate various time correlation functions of the form

CAB(t)) tr[ÂeiĤt⁄pB̂e-iĤt⁄p] (3.5)

because most quantities of interest in the dynamics of complex
systems can be expressed in terms of them. Straightforward use
of eq 3.2 for the two propagators in the correlation function
thus gives it as a double phase space average

CAB(t)) (2πp)-F∫ dp0 ∫ dq0 (2πp)-F ×

∫ dp0′ ∫ dq0′ Ct(p0,q0) Ct(p0′,q0′) ×

ei[St(p0,q0)-St(p0′,q0′)]/p〈p0, q0|Â|p0′,q0′〉〈 pt′,qt′|B̂|pt,qt〉 (3.6)

and here one sees the additional difficulty of an SC calculation
compared to a purely classical one: because these phase space
averages will of necessity be evaluated by Monte Carlo methods
(both classically and SC’ly), the oscillatory factor arising from
the phase difference from the action integrals of the two
trajectories makes straightforward Monto Carlo methods very
inefficient. There are several ways that have been developed
for dealing with this SC version of the “sign problem”.

The most drastic approximation to eq 3.6 is to assume that
the only parts of the integrand that contribute significantly are
when the two phase points, (p0, q0) and (p0′, q0′)sand thus the
two trajectories emanating from themsare infinitesimally close
together. Carrying through this idea (one needs to use the
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coordinate IVR, cf. eq 3.4, etc., rather than the coherent state
version) by linearizing the difference between the two trajec-
tories,29 leads to the classical Wigner approximation for the
correlation function,

CAB(t)) (2πp)-F∫ dp0 ∫ dq0 Aw(p0,q0) Bw(pt,qt)

(3.7a)

i.e., the same expression as the classical correlation function
except that the Wigner functions for the two operators appear
rather than the classical functions themselves,

Ow(p,q))∫ d∆q e-ip ·∆q/p〈q +∆q/2|Ô|q -∆q/2〉

(3.7b)

for any operator Ô. The classical Wigner model is an old idea
and is obtained as an approximation to a variety of formula-
tions.30 It is interesting in the present context to see that it is
contained within the SC-IVR description, and thus any more
accurate treatment of the SC-IVR approach will presumably be
even more accurate. The classical Wigner model cannot describe
any true quantum coherence featuressbecause the forward and
backward trajectories31 are assumed to be infinitesimally
closesbut it does describe some quantum effects to a useful
level of accuracy. It has been shown to describe tunneling32 in
H atom barrier transmission, for example, to an accuracy of
∼10- 30% when the tunneling correction is as large as 102 to
103. It also has been seen to describe zero point energy effects33

in low temperature liquid para-hydrogen that prevent the liquid
from freezing (as it does classically). Because the classical
Wigner model is so similar to a classical calculation, and thus
relatively easy to implement, there has been a great deal of
activity in recent years using it to calculate a variety of time
correlation functions for large molecular systems.

The forward-backward (FB) IVR34 is the simplest version
of the SC-IVR that goes beyond the linearized IVR/classical
Wigner model and is thus able to describe true coherence effects.
The basic idea35 of the FB-IVR is to combine the forward and
backward propagators, exp(-iĤt/p) and exp(+iĤt/p), into one
forward-backward propagation and thus cancel out analytically
as much as possible of the phase difference between the forward
and backward propagators, rather than having to do it all
numerically. For example, if operator B̂ involved only the
coordinate of one DOF, q1 for example, and this were separable
from all the other DOF, then the forward and backward
propagators for the “bath” (all the DOF except # 1) would
exactly cancel each other. The idea of the FB-IVR is not to
make this approximation but, nevertheless, to obtain efficiency
in the Monte Carlo integration by exploiting the fact that there
will in general be much cancelation between the forward and
backward propagators.

For example, if operator B̂ is a coordinate operator that is
the function of one collective function of all the coordinates
qsi.e., B̂ ) B(s(q))sas is often the case, then the FB-IVR
expression for the correlation function is34

CAB(t))∫ dps B̃(ps)(2πp)-F∫ dp0 ×

∫ dq0 〈p0,q0|Â|p0′ ,q0′ 〉 eiS0(p0,q0;ps)/pC0(p0,q0;ps) (3.8a)

where (p0,q0) are the initial conditions for a trajectory that is
propagated by the usual classical equations of motion until time
t, at which time it undergoes a momentum jump,

ptf pt + ps

∂s(qt)

∂qt
(3.8b)

and is then propagated back to time 0, the final phase point
being (p0′, q0′). The pre-exponential factor for this forward-
backward trajectory is of the usual form, and the FB action
integral is the sum of that for the forward and backward parts
of the FB trajectory plus a contribution from the momentum
jump. B̃(ps) is the (1d) Fourier transform of B(s). The correlation
function is thus seen to be a single phase space average over
initial conditionssnot the double phase space average of the
complete SC-IVR expression, eq 3.6salbeit over FB trajectories,
plus the 1d integral over the momentum jump parameter ps.
This is essentially as simple a result as one can obtain within
the SC-IVR framework that is able to describe true quantum
coherence, and applications to several interesting problems have
shown it to be capable of describing quantum coherence quite
well. If one were to assume that only small values of ps were
significant, and expanded the FB action integral (and other
factors) in eq 3.8a to first order in ps, then one would obtain a
result very similar to the classical Wigner model (with Husimi
distribution functions rather than Wigner ones).

c. SC-IVR for the MMST Hamiltonian. Application of the
SC-IVR to the MMST nuclear-electronic Hamiltonian, eq 2.16,
to treat electronically nonadiabatic processes is now straight-
forward:36 classical trajectories are computed from this classical
Hamiltonian, for the nuclear and electronic DOF, and the
calculations can be carried out at the full SC-IVR level without
further approximation, e.g., eq 3.6, or with additional ap-
proximations, such as the “linearized” IVR/classical Wigner
approximation of eq 3.7a, or the more accurate FB-IVR
approach of eq 3.8a. A number of such calculations have been
carried out,37 using all of these approaches, and some involving
many (.10) DOF and usually 2 (and some 3) electronic states,
and they have generally shown very good agreement with more
complete quantum calculations where these have been available.
Also, Stock and Thoss38 have recently published a comprehen-
sive review of the SC-IVR/MMST approach, and Grossmann39

even more recently a briefer one.
It is thus not my purpose here to survey all recent applications

of the SC-IVR/MMST approach, but rather I will focus on an
application8 to a very simple system, one nuclear DOF (transla-
tion, i.e., a 1d scattering problem) and two electronic states,
very much like the examples that Tully40 used several years
ago to test the “fewest switches” version of his “surface
hopping” model. Figure 5 shows the PES’s (here potential
curVes for just this one nuclear DOF), both diabatic and
adiabatic, for a symmetric and asymmetric version of the model.
One imagines the incident particle approaching from the left
(R ,0), with a well-defined translational energy on one of the
potential curves, and having some probability of emerging to
the “product” region on the right (transmission), on either
potential curve (i.e., electronic state), or back to the “reactant”
region on the left (reflection), also on either of the two potential
curves.

The point of this calculation is to demonstrate how the MMST
classical Hamiltonian behaves when it is implemented semi-
classically. As has been emphasized (cf. end of section II), the
nuclear-electronic trajectories generated by this Hamiltonian
are Ehrenfest trajectories, and we know that if the traditional
Ehrenfest model were applied to this problem the nuclear
trajectory would emerge moving, incorrectly, on an average
potential energy curve. How is this changed if these same
trajectories are used within a SC description? And how
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“rigorous” must be the SC treatment for the situation to be
described correctly?

To answer these questions, we calculate the probability
distribution of the final translational momentum, which can be
expressed as the long time limit of a correlation function like
that in eq 3.5,

P(Pf)) lim
tf∞

tr[ÂeiĤt/p)δ(P̂-Pf)e
-iĤt/p)] (3.9a)

where operator Â is the projection operator for the initial state

Â) |Ψi〉〈 Ψi| (3.9b)

the wave function for which is

Ψi(x1,x2,R)) φ0(x1) φ1(x2)〈R|PiRi〉 (3.9c)

the nuclear wave function being a coherent state with Ri , 0,
and Pi the initial translational momentum. (The coherent state
parameter γ for this coherent state is chosen to be quite small,
so that the initial translational energy is very sharply defined.)
With one quantum of excitation in “electronic oscillator” 2, this
wave function corresponds to the system being initially on
potential curve 2. Operator B̂ in eq 3.9a is a delta function,
where P̂ is the nuclear momentum operator and Pf the observed
final value of the nuclear (here, translational) momentum. Note

that nothing in this quantity, eq 3.9a, refers to the final electronic
state; it is a “measurement” (i.e., observation) only of the final
nuclear momentum. The reader should see ref 8 for details of
the calculations (e.g., because here operator B is a function of
the nuclear momentum operator, in the FB trajectories there is
a jump in the nuclear position at time t, rather than a jump in
momentum as in eq 3.8b that arises when B is a function only
of coordinates).

Figures 6 and 7 show the probability distribution in final
translational momentum for the symmetrical potential (Figure
5a) for two different values of the initial translational energy:
Figure 6 for the higher energy, and Figure 7 for the lower. (The
two energies are indicated by arrows on the vertical axis in
Figure 5.) Figures 6a and 7a show the results given by the FB
version of the SC-IVR, along with the exact QM results, the
two being seen to be in good agreement. Because the initial
state has a well-defined value for the total energy (electronic
plus translational), the two peaks in the distribution for positive
momentum obviously correspond to the two possible final
electronic states in which the system can emerge in the “product”
(transmission) region; there is essentially no reflection to the
“reactant” (negative momentum) region for this potential. The
areas under the peaks give the transition probabilities to each
final electronic state. Figures 6b and 7b show the corresponding

Figure 5. Potential curves for the (a) symmetric and (b) asymmetric
versions of the electronically nonadiabatic scattering problem discussed
in section IIIb. Both diabatic and adiabatic potentials are shown. The
two arrows on the vertical (energy) axes indicate the two collision
energies for which calculations were carried out. Note that for the
asymmetric version (Figure 5b), at the lower energy the higher
electronic state is a closed channel (i.e., energetically forbidden) in
the “product” region (transmission) R . 0, whereas both states are
allowed for reflection, R , 0.

Figure 6. Probability distribution of the final (t f ∞) translational
momentum, as defined by eq 3.9b, for the symmetric potential (Figure
5a) and the higher energy. (a) Solid line is the numerically exact QM
result, and dashed line that given by the FB-IVR. (b) Solid line (which
is a schematic depiction of a Dirac delta function) is the result given
by the traditional Ehrenfest model, and dashed line that given by the
classicalWignermodel(or linearizedSC-IVR)LSC-IVR)approximation.

1412 J. Phys. Chem. A, Vol. 113, No. 8, 2009 Miller



results given by the traditional Ehrenfest and the classical
Wigner models. The Ehrenfest result is essentially a delta
function at one particular momentum, because it involves only
one trajectory; this is a manifestation of the defect of this model,
namely that the nuclear trajectory emerges on an average PES,
thus having only one final nuclear momentum. The classical
Wigner model, because it involves an ensemble of trajectories,
is somewhat better, showing a distribution of final nuclear
momenta, and one sees that the breadth of the distribution is
approximately related to the two peaks in Figures 6a and 7a. It
cannot, though, properly describe the two peaks in the distribu-
tion which correspond to the two individual final electronic
states.

Figures 8 and 9 show similar results for the asymmetric
version of the model (Figure 5b, the two arrows on the vertical
axis again indicating the two energies considered). For the higher
energy, the correct QM and the FB-IVR results in Figure 8a
(in good agreement with one another) show two peaks for
positive momentum, corresponding again to the two final
electronic states in the “product” (transmission) region; there
is essentially no reflection at this energy. The traditional
Ehrenfest and classical Wiger results are shown in Figure 8b;
the Ehrenfest result again shows only a single peak, as it must,
at an average final nuclear momentum, whereas the Wigner
model gives a distribution that is a crude approximation to the
correct (quantized) distribution of the translational momentum.
The lower energy case, Figure 9, is even more interesting
because at this energy only one electronic state is allowed (an
“open channel”) in transmission, whereas both states are allowed

in reflection. Figure 9a shows the correct QM and the FB-IVR
results, which are in reasonable agreement (though the Fourier
transform involved in the FB calculation is somewhat noisy);
there is one peak in transmission, corresponding to the one
possible electronic state, and two peaks at negative momentum
(reflection) corresponding to the two possible final electronic
states in the “reactant” region. The corresponding Ehrenfest and
classical Wigner results are shown in Figure 9b. Here the
Ehrenfest model is almost completely useless, because one
trajectory can clearly not describe transmission and reflection
even qualitatively correctly; thus the one peak it shows in Figure
9b is essentially meaningless. Again, the Wigner model is better,
showing some transmission and some reflection, though again
it does not describe the two individual electronic states in the
transmission (negative momentum) region.

IV. Discussion

One sees, therefore, that when “Ehrenfest trajectories” are
used within a SC theory that is capable of describing interfer-
ence/coherence correctlysas, for example, the FB version of
the SC-IVRsthe nuclear trajectories emerge, correctly, on one
PES or the other, not on an average PES as in the traditional
Ehrenfest model or the “linearized”/classical Wigner ap-
proximation to the SC-IVR, which is unable to describe
coherence. In other words, it is the proper inclusion of coherence
that causes the Ehrenfest trajectories to “quantize” on one PES
or another; there do exist Ehrenfest trajectories that emerge on
an average PES, but the net amplitude associated with them is
zero because of destructive interference. This is easily under-

Figure 7. Same as Figure 6, except for the lower energy indicated in
Figure 5a.

Figure 8. Same as Figure 6, except for the asymmetric potentials of
Figure 5b (for the higher energy indicated).
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stood from simple WKB theory, where bounded motion for an
extended time (i.e., many periods of oscillation) in any 1d
potential well leads to quantization, i.e., an integer value of the
classical action variable (the SC “quantum number”) as the SC
phase exp(iS/p) accumulates, as it does for these 1d harmonic
oscillators in the asymptotic region. Because there is only one
quantum of excitation in the N electronic oscillators, and this
is conserved by the dynamics, the only possible integer values
for these SC “quantum numbers” are 1 for one of the oscillators
and 0 for all others, so that the nuclear motion must emerge
from an uncoupled region (after a number of vibrational periods
of the electronic oscillators) on one or another of the N PES’s
(diabatic or adiabatic, the result being invariant to which
representation is used).

It is interesting to contrast this description with that in several
phenomenological models41,42 of electronically nonadiabatic
dynamics in which it is decoherence that drives the nuclear
trajectory to one PES or another. It would be interesting to see
how these seemingly different perspectives might be reconciled.

There are of course cases where the correct description of
coherence is not crucial. The resonance electronic-vibration/
rotation energy transfer effects discussed in section II were
described reasonably well by the “quasi-classical” treatment of
the MMST Hamiltonian. The “linearized” IVR/classical Wigner
model is very similar to the quasi-classical approximation; as
seen in the example discussed in section IIIc, it gives a
distribution of final translational momenta, which could be
“binned” to obtain transition probabilities to individual final
electronic states, even though the nuclear trajectories do not
emerge precisely on the corresponding final PES.

Seeing how a sufficiently rigorous implementation of SC
theory is able to give a proper treatment of nuclear-electronic
dynamics within the MMST representation of the system, one
can also explore additional approximations that could be
introduced to make calculations simpler while still retaining as
correct a description as possible. For the dynamics to “quantize”
correctly on one PES or another in noninteracting regions, at
least the coherence (i.e., the SC phase) of the electronic-oscillator
DOF needs to be included, but perhaps one could ignore the
coherence aspects of the nuclear DOF, i.e., using a more
classical-like description of them. One way to implement this
idea is to make a “linearized”/classical Wigner-like approxima-
tion for the nuclear DOF, while still retaining a full SC
description of the electronic DOF. This type of “mixed classical/
semiclassical” model has been formulated,43 and model calcula-
tions have been carried out to illustrate its possibilities, but
further applications have not been pursued. In light of the present
MMST representation for nuclear-electronic dynamics, it may
be worthwhile to revisit this approximation.

Finally, it is perhaps useful to comment briefly on the relation
of the SC-IVR treatment of the MMST Hamiltonian to a much
earlier SC approach to electronically nonadiabatic dynamics by
Pechukas,44 which was very insightful and influential; see ref
36 for a more detailed discussion. Pechukas’ approach is a two-
step procedure, first to solve the (time-dependent) electronic
Schrödinger equation for a given nuclear path R(t), and second
to perform a Feynman path integral (that would give exact QM
results if done exactly) over nuclear paths by the stationary phase
approximation, i.e., SC’ly. This leads to a nuclear trajectory
that does indeed begin and end on a specific PES but has the
major drawback that the equation of motion for the nuclei is
nonlocal in time (i.e., the force on the nuclear DOF at time t
involves the future and the past) and is thus very difficult to
implement. Were this two-step procedure carried out within the
SC-IVR/MMST formulation, the first stepscalculation of the
electronic transition for a fixed nuclear trajectoryswould be
done exactly, because the time-dependent “electronic” Hamil-
tonian would be a time-dependent quadratic Hamiltonian, for
which the SC-IVR is exact. And the second step would be done
more accurately and efficiently by the SC-IVR than via the
stationary phase approximation. Thus the SC-IVR/MMST
approach must be more accurate than that of Pechukas, and more
importantly, it is easier to implement because it evolves the
electronic and nuclear dynamics simultaneously and thus has
no nonlocal character.

In summary, the MMST Hamiltonian, eq 2.16 or 2.17a,
provides an extremely useful representation of the nuclear and
electronic DOF of a molecular system, and one sees again that
all quantum effects in molecular dynamics are described at least
qualitatively correctly by a consistent SC treatment of all the
DOF of the system, and that the description is usually suf-
ficiently quantitative to be useful. Particularly interesting is that
the nuclear-electronic classical trajectories generated by the
MMST Hamiltonian (and which go into the SC theory) are
“Ehrenfest trajectories”. Used within the SC framework, though,
they correctly describe nuclear motion that “settles down” on
one electronic PES or another after some time in regions where
the electronic coupling vanishes. The primary remaining chal-
lenges are to develop the methodologies and algorithms neces-
sary to implement this formulation as efficiently as possible.
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